North Penn School District

Elementary Math Parent Letter

Grade 5

Unit 1 - Chapter 1: Place Value, Multiplication, and Expressions

Examples for each lesson:

Lesson 1.1

Place Value and Patterns

You can use a place-value chart and patterns to write numbers that are 10 times as much as or $\frac{1}{10}$ of any given number.

Each place to the right is $\frac{1}{10}$ of the value of the place to its left.

$\frac{1}{10}$ of the hundred thousands place	$\frac{1}{10}$ of the ten thousands place	$\frac{1}{10}$ of the thousands place	$\frac{1}{10}$ of the hundreds place	$\frac{1}{10}$ of the tens place	
Hundred Thousands	Ten Thousands	Thousands	Hundreds	Tens	Ones
10 times the ten thousands place	10 times the thousands place	10 times the hundreds place	10 times the tens place	10 times the ones place	

Each place to the left is 10 times the value of the place to its right.
Find $\frac{1}{10}$ of 600 .
$\frac{1}{10}$ of 6 hundreds is 6 tens.
So, $\frac{1}{10}$ of 600 is \qquad .

Find 10 times as much as 600.
10 times as much as 6 hundreds is 6 thousands.
So, 10 times as much as 600 is 6,000 .

Lesson 1.2

Place Value of Whole Numbers

You can use a place-value chart to help you understand whole numbers and the value of each digit. A period is a group of three digits within a number separated by a comma.

Millions Period			Thousands Period				Ones Period		
Hundreds	Tens	Ones	Hundreds	Tens	Ones	Hundreds	Tens	Ones	
		2,	3	6	7,	0	8	9	

Standard form: 2,367,089
Expanded Form: Multiply each digit by its place value, and then write an addition expression.
$(2 \times 1,000,000)+(3 \times 100,000)+(6 \times 10,000)+(7 \times 1,000)+(8 \times 10)+(9 \times 1)$
Word Form: Write the number in words. Notice that the millions and the thousands periods are followed by the period name and a comma.
two million, three hundred sixty-seven thousand, eighty-nine
To find the value of an underlined digit, multiply the digit by its place value. In $2,367,089$, the value of 2 is $2 \times 1,000,000$, or $2,000,000$.

More information on this strategy is available on Animated Math Model \#1.

Lesson 1.3

Algebra • Properties

Properties of operations are characteristics of the operations that are always true.

Property	Examples
Commutative Property of Addition or Multiplication	Addition: $3+4=4+3$ Multiplication: $8 \times 2=2 \times 8$
Associative Property of	Addition: $(1+2)+3=1+(2+3)$ Addition or Multiplication
Mistribution: $6 \times(7 \times 2)=(6 \times 7) \times 2$	
Identity Property of Addition	$8 \times(2+3)=(8 \times 2)+(8 \times 3)$
Identity Property of Multiplication	$9+0=9 \quad 0+3=3$

Use properties to find $37+24+43$.

$$
\begin{aligned}
37+24+43 & =24+\underline{37}+43 & & \begin{array}{l}
\text { Use the Commutative Property of Addition } \\
\text { to reorder the addends. }
\end{array} \\
& =24+(37+43) & & \begin{array}{l}
\text { Use the Associative Property of Addition } \\
\text { to group the addends. }
\end{array} \\
& =24+\underline{80} & & \text { Use mental math to add. } \\
& =\underline{104} & &
\end{aligned}
$$

Grouping 37 and 43 makes the problem easier to solve because their sum, 80 , is a multiple of 10 .

Lesson 1.4

Algebra • Powers of 10 and Exponents

```
You can represent repeated factors with a base and an exponent.
Write 10 }\times10\times10\times10\times10\times10\mathrm{ in exponent form.
10 is the repeated factor, so 10 is the base.
The base is repeated 6 times, so 6 is the exponent.
10\times10\times10\times10 < 10 < 10= 10 5
A base with an exponent can be written in words.
Write 10 }\mp@subsup{}{}{6}\mathrm{ in words.
The exponent 6 means "the sixth power."
106 in words is "the sixth power of ten."
You can read 102 in two ways: "ten squared" or "the second power of ten."
You can also read 103 in two ways: "ten cubed" or "the third power of ten."
```


More information on this strategy is available on Animated Math Model \#3.

Lesson 1.5

Algebra • Multiplication Patterns

```
You can use basic facts, patterns, and powers of 10 to help
you multiply whole numbers by multiples of 10,100, and 1,000.
Use mental math and a pattern to find 90 }\times6,000\mathrm{ .
- }9\times6\mathrm{ is a basic fact. }9\times6=5
- Use basic facts, patterns, and powers of 10 to find 90 < 6,000.
9 < 60= (9 < 6) \times 10'
    = 54 \times 10'
    = 54 \times 10
    = 540
9 < 600 = (9 \times6) \times 10 2
    = 54 \times 10
    = 54 \times100
    = 5,400
9 < 6,000=(9 < 6) \times 103
    = 54 \times 103
    = 54 \times 1,000
    = 54,000
90 < 6,000=(9 < 6) \times(10\times1,000)
    = 54 \times 104
    = 54 \times 10,000
    = 540,000
So,90 < 6,000=540,000.
```

More information on this strategy is available on Animated Math Model \#4.

Lesson 1.6

Multiply by 1-Digit Numbers

More information on this strategy is available on Animated Math Model \#5.

Lesson 1.7

Multiply by 2-Digit Numbers

```
You can use place value and regrouping to multiply.
Find 29 < 63.
Step 1 Write the problem vertically.
    Multiply by the ones.
\[
\left.\begin{array}{rl}
2 \\
63 \\
\times 29 \\
\hline 567 & 63 \times 9
\end{array}\right)(\underline{60} \times 9)+(3 \times 9)
\]
```

Step 2 Multiply by the tens.

Step 3 Add the partial products.

So, $63 \times 29=1,827$.

More information on this strategy is available on Animated Math Model \#6.

Lesson 1.8

Relate Multiplication to Division

Use the Distributive Property to find the quotient of $56 \div 4$.

Step 1

Write a related multiplication sentence
$56 \div 4=$
for the division problem.

Step 2
Use the Distributive Property to break apart
$(40+16)=56$ the product into lesser numbers that are multiples of the divisor in the division problem.
$(4 \times 10)+(4 \times 4)=56$
$4 \times(10+4)=56$
Step 3
To find the unknown factor, find the sum of the numbers inside the parentheses.

Step 4
$4 \times \mathbf{1 4}=56$
Write the multiplication sentence with the unknown
$56 \div 4=14$ factor you found. Then, use the multiplication sentence $10+4=14$ to complete the division sentence.

Lesson 1.9

Problem Solving • Multiplication and Division

In Brett's town, there are 128 baseball players on 8 different teams. Each team has an equal number of players. How many players are on each team?

Read the Problem	Solve the Problem
What do I need to find? I need to find \qquad how many players are on each team in Brett's town. What information do I need to use? There are 8 teams \qquad with a total of \qquad 128 players. How will I use the information? I can \qquad divide the total number of players by the number of teams. I can use a simpler problem to divide \qquad	- First, I use the total number of players. $128 \text { players }$ - To find the number of players on each team, I will need to solve this problem. $128 \div 8=?$ - To find the quotient, I break 128 into two simpler numbers that are easier to divide. $\begin{aligned} 128 \div 8 & =\left(80+\frac{48}{80} \div 8\right. \\ & =\left(\frac{10}{10}+\left(\frac{48}{6} \div 8\right)\right. \\ & =\frac{16}{6} \\ & =\frac{16}{16} \text { players on each team. } \end{aligned}$

Lesson 1.10

Algebra • Numerical Expressions

Write words to match the expression.

$$
6 \times(12-4)
$$

Think: Many word problems involve finding the cost of a store purchase.
Step 1 Examine the expression.
-What operations are in the expression? multiplication and subtraction
Step 2 Describe what each part of the expression can represent when finding the cost of a store purchase.
-What can multiplying by 6 represent? buying 6 of the same item
Step 3 Write the words.

- Joe buys 6 DVDs. Each DVD costs $\$ 12$. If Joe receives a $\$ 4$ discount on each DVD, what is the total amount of money Joe spends?

Lesson 1.11

Algebra • Evaluate Numerical Expressions

A numerical expression is a mathematical phrase that includes only numbers and operation symbols.

You evaluate the expression when you perform all the computations to find its value.

Order of Operations

1. Parentheses
2. Multiply and Divide
3. Add and Subtract

To evaluate an expression, use the order of operations.
Evaluate the expression $(10+6 \times 6)-4 \times 10$.
Step 1 Start with computations inside the parentheses.

Step 2 Perform the order of operations inside the parentheses.

Step 3 Rewrite the expression with the parentheses evaluated.

Step 4 Multiply and divide from left to right.
Step 5 Add and subtract from left to right.

Multiply and divide from left to right.

$$
10+6 \times 6=10+36
$$

Add and subtract from left to right.

$$
10+36=\underline{46}
$$

$$
46-4 \times 10
$$

$$
46-4 \times 10=46-40
$$

$$
46-40=
$$

\qquad

Lesson 1.12

Algebra• Grouping Symbols

Parentheses (), brackets [], and braces \{ \}, are different grouping symbols used in expressions. To evaluate an expression with different grouping symbols, perform the operation in the innermost set of grouping symbols first. Then evaluate the expression from the inside out.

Evaluate the expression $2 \times[(9 \times 4)-(17-6)]$.
Step 1 Perform the operations in the parentheses first.

Step 2 Next perform the operations in the brackets.

Step 3 Then multiply.
$2 \times 25=\underline{50}$

So, $2 \times[(9 \times 4)-(17-6)]=\underline{50}$

Vocabulary

Base - a number used as a repeated factor
Distributive Property - the property that states that multiplying or dividing a sum by a number is the same as multiplying or dividing each addend by the number and then adding the products or quotients

Evaluate - to find the value of an expression
Exponent - a number that tells how many times a base is used as a factor
Inverse operations - opposite operations that undo each other; addition and subtraction are inverse operations; multiplication and division are inverse operations

Numerical expression - a mathematical phrase that has numbers and operation signs but no equal sign

Order of operation - the process for evaluating expressions
Period - each groups of three digits separated by commas in a multi-digit number

